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SUMMARY

Our analysis of the free sheared atmosphere is based on the hierarchy of equations satisfied
by the modal coefficients (strengths). This hierarchy is obtained by substituting a series
expansion of the fluid variables into the governing equations. Qur analysis is particularly
focused on the stability of the Taylor-Dyson atmosphere, which is designed to be a model of
the free sheared atmosphere. The construction of the hierarchy is however independent of
the model that one chooses albeit the more complicated the model, the more complicated the
hierarchy. The classicai approach considers Fourier scrics and the prototype is the successful
Salzman-Lorenz hierarchy for the Benard problem, i.e. a thin laver of fluid heated from
below. This problem is designed to be a model of the lower atmosphere. The application
to the free sheared atmosphere modcled by the famous Taylor-Dyson equations of Fourier
techniques has yielded the puzzling result that no unstable modes appear in lincar order. The
origin of the Richardson number criterion thus remains obscure. With the advent of wavelet
analysis. we have deemed 1t useful (actually imperative) to perform the analysis, not on the
basis of the Fourier modcs which have infinite energy and esscntially unbounded support.,
but rather on the basic ot w.velets which are designed to have finite energy and essentially
compact support. It is intuitively clear that such refined modal analysis should allow for
a much more satisfactory physical interpretation of results. This point of view is further
strengthened by the current trend in experimental work that emphasizes disturbances with
finite spatial and temporal extents. At Boston University, we have developed a full form of
wavelet expansion which has the advantage over more conventional procedures of possessing

a complete convolution algebra.

The possibility of operating with a convolution algebra has so far been a prerogative of the
Fourier analysis. Its major use in the present context is the calculation of the effect of forcing
on a particular hierarchical level. Convolution algebra permits an immediate expression for

the result of a forcing term on a variable that satisfies a given differential equation. The




mathematica! ' jols needed to obtain a convolution algebra for modes with finite energy
are rather extensive and not always elementary. To help our thinking, and also to help
introduce interested scientist to a rather difficult area, we put together the most essential
parts of the analysis and we present them in this report. It is worth mentioning at this point
that very fruitful applications have been made of our wavelet analysis in biomedical areas.
In particular the analysis of M waves in muscle response has been analysed very successfully
with the wavelets presented here. While our main interest is the development of the chaos
dynamics of the free sheared atmosphere, the Taylor-Dyson model in particular, we deem

the mathematical background essential and also of general interest.




1 Signals and Systems and the Inverse Problem

1.1 Introduction

A majority of systems, natural and man-made, are linear and time-invariant (LTI)[1].
By linear, it is meant that if u; and u, are two inputs to a physical system, with
respective outputs y, and y,, then the output to the input au; + Bu; is ay; + By,
where a and B arc two real numbers. By time-invariant, it is meant that a time-
shift in the input signal causes an equal time-shift in the output signal. In other
words, if the input u(t) produces the output y(t), then the input u(t — 7) produces
the output y(¢ — 7). These properties are depicted in figure 1. It can be proven that
the output of any linear time-invariant system can be modelled by the convolution of
the input signal with the tmpulse response of that system. The impulse response (or
potnt-spread function PSF) of a system is the output when the input to the system
is a Dirac delta function (e.g. for electrical systems, a very high, very short-duration
clectrical pulse). The proof is as follows. Let £ denote a discrete LTI system. Let
a discrete Dirac delta §[n] be the input to the system. By definition. the discrete
impulse response hg[n] is the output of:

én] — @ —  hg[n] (1)
Because of the property of shift-invariance,
Eln—k] — [L] —  hi[n) = holn — k] (2)

Furthermore, because of the property of linearity,

> z[k]§[n - k] — — Y z[k]hn] 3)

k

It can be proven that any discrete signal z[n] can be written in the form r[n] =
S r{k]é[n — k]. This property is commonly referred to as the discrete sampling
propcrty[l]. or. more technically, as Dirac’s identity. Combining Eqs.(2) and (3). we

cbtain
z[n) = S z[kjb[n — k] — [£] — y[n] = Y z[k]ho[n ~ K] (4)
k k
In the case of continuous-time LTI systems, Eq.(4) is written as:

+ 0 400
f(s):/ 2(1)8(t=7)dr — [L] — y(t):/ 2(7)holt —7)dr = z(t) » ho(t)
()
where hy(t) is the impulse response of L.

In many instances, the physicist. the engincer. or the mathematician is asked to
determine the initial condition (or input) to a system, when the final condition (or




output) is known. This problem is known as the inverse problem. In mathematical
terminology, knowledge of the system implies knowledge of its impulse response; the
solution of the inverse problem implies knowledge of the output, and convolution
inverse to its impulse response. This last statement is proven below. If u represents
the input to the system, y the output, and & its impulse response, then by definition:

¥(z) = hiz) sulz) = [ bz - ) ds’ (%)

If the impulse respouse A has a convolution inverse Inv[h], this implies by definition
that the convolution of h with Inu[h] yields the Dirac delta function:

h(z) * Inv[h)(z) = 6(z) (7)

That is because the Dirac delta is the unit element for the operation of convolution,
much in the same way the number 0 is the unit element for integer addition:

f(z) = 6(x) f(z)  for any function f(x) (8)
n+0 = n for any integer n

If y an’ h are known, then the initial condition u can be determined in the following
way: convolve Eq.(6) with Inv[h], and use Eq.(7) to obtain:

Invlh]*xy = Inv[h]xhxu=46*u=u (9)

With the input u thus determined, the irverse problem for a linear time-invariant
system can always be solved, provided the convolution inverse Inv[h] to the system’s
impulse response can be evaluated. Unfortun~tely, in a number of cases, the con-
volution inverse cannot be determined within the space of smooth point-functions,
much in the same way natural numbers do not have natural number inverses to the
operation of addition: one either has to construct a new operation (ic. subtraction)
or extend the space of natural numbers to the space of positive and negative integers:

n—n = 0, or (10)
n+(-n) = 0 (11)

By analogy, the construction of a consistent convolution inverse to any impulse re-
sponse will require:

e cither a new defining operation, replacing convolution as the operation of choice
for modelling LT1 systems,

e or the extension of the space of smooth point-functions to a larger space, which
will include more singular functions than just smooth or piecewise smooth point-
functions.

[S™]




This picture will become clearer in the next section, when [ourier transforms are
introduced, and where it will be shown that there exists no smooth point-function such
that convolving with any Gaussian e=*"/*"/\/T )\ yields a Dirac delta; in other words,
that there exists no smooth or piecewise smooth point-function that is convolution
inverse to a Gaussian (of infinite support, i.e. defined in | — 0o, +o0f).

1.2 Fourier Transform Solutions to the Inverse Problem

Fourier transforms are frequently utilized to solve inverse problems for linear time-
invariant systems. That is because the operation of convolution gets mapped into a
simple algebraic multiplication under the Fourier transform. If u(z), y(z), and h(z)
are respectively the input, output, and impulse response of a linear time-invariant
system, and if §(k) denotes the Fourier transform of y(z):

it = [ y@etds (12
we) = oo [ ket d (13)
then
y(z) = u(.r)*.h(x) (14)
gk = ak)- h(h) (15)

and we can thus obtain an expression for the input, given the output and the impulse

response:

ik = YR
a(k) = ) (16)
u(z) = 2-1-/ izi et i, (17)

However, eventual zeros of h(k), at specific points in wave-number space, or at the
limits o of the Fourier integral, will ill-condition the inverse-Fourier integral in
Eq.(17). This result can be interpreted in the following way. In Fourier space, the
blurred waveform is the product of the optical transfer function (OTF, Fourier trans-
form of the point-spread function) with the original waveform. As the support of
the point-spread function increases, the support of the optical transfer function de-
creases (a property of Fourier transforms), thus cutting off an increasing amount of
high [requencies »f the original waveform, which unavoidably “smooths” or “blurs”

This process is depicted in figure 2. The inverse Fourier integral in Eq.(17) has
to restore the high frequencies lost in the blurring process; the higher the frequen-
cies, the greater the magnitude of the restoration. This process eventually leads to a
diverging inverse-Fourier integral.




We now consider the case of a Gaussian filter G(z,1):

)

x

e~
- viarnt

and attempt to evaluate an explicit representation of the convolution inverse of G(z, t)
with the help of Fourier transforms. We suppress the spatial variable z if confusion
does not arise, and denote G(z,t) by G(t). Thus, using standard definitions(2](3], we
introduce

G(z,1) (18)

1 +a R
=8 e~k +ki gp (19)

F(a,z,2t) =

e T z
= ——ferf(ivVta+ —=) +erf(ivVi a — — 20
4 r—rt[r(l a 2\/{) (2 a 2\/2)] (20)
A graph of F(a,z,1) appears in figure 3, and the time history of F(a,z,t) appears
in figure 4. In constructing the figures, the Nyquist criterion was applied to ensure
that the factor €X't did not generate frequency aliasing][1).

Proceeding formally, Inv[G(t)] = limy— F(a,z,2t), and it can be seen from fig-
ures 3 and 4 that the expression for Inv[G(t)] diverges as the upper and lower integral
limits +a are increased in wave-number space. Nevertheless, engineering approxima-
tions of Inv[G(t)] are frequently used by cutoff of the limits of the Fourier integral
(also called finite-bandwidth approximations, since the support of the gaussian filter
is reduced from | — 0o, +00[ to [-a,+a]). In other words, information on the impulse
response and the output for large wave-numbers k has to be discarded. However, the
approximations to the original input thus obtained are highly sensitive to the cutoff
value a, and if there is no a priori knowledge of the Fourier spectrum width of the
input, the complete recovery of the original input through Fourier transforms is an
ill-posed problem. Nevertheless, Gaussians are impulse responses to a wide variety
of physical systems!, generally called blurring systems. Systems with pure Gaussian
impulse response are responsible for gaussian blur, while systems without a Gaus-
sian impulse response are responsible for non-gaussian blur. Telescopes and a vast
majority of optical systems are blurring systems in two spatial dimensions. Commu-
nication satellites are blurring systems in one dimension (waveforms are transmitted
sequentially). If the convolution inverse of a Gaussian (of infinite support) cannot be
defined as a smooth point-function, how can it be defined and subsequently utilized
to solve the inverse problem?

We propose here a novel approach to Gaussian deconvolution by constructing a rig-
orous relation between the deconvolution of a waveform that results from a Gaussian
filter, and the integration of the diffusion equation with negative diffusivity (antidif-
fusion). In constructing this relationship, a new class of highly singular functions that

'or at lcast good approximations thereof




are called hyperdistributions are introduced, as well as their algebraic properties and
a sequence of analyzing smooth point-functions (Hermite-Rodriguez wavelets) that
approximate them.

2 Singular Functions: Distributions and Hyper-
distributions

2.1 Taylor and Moment Expansions
The theory of hyperdistributions is built on ideas related to Dirac’s delta function,

which is technically a distribution[4]-[11]. The Dirac delta function, §(z), has the
following properties:

+o00
/_ §(z)dz = 1 (21)
and Dirac’s identity: .\
f@) = [ 8z - 2)f(a)da’ (22)

for any suitably smooth function f(z).

Distributions, like the Dirac delta function, were first introduced by L. Schwartz[4],
and widely publicized by G. Temple[6] and M. Lighthill{10]. In fact, Lighthill dedi-
cated his book to Dirac, Schwartz, and Temple, in the following way:

To
PAUL DIRAC
who saw that it must be true,
LAURENT SCHWARTZ
who proved it,
AND
GEORGE TEMPLE

who showed how simple it could be made

Both Dirac and Temple are Englishmen, while Schwartz is a Frenchman. The English
do have a knack for putting down the French, do they not?

Distributions allow for considerable simplification and increased mathematical ele-
gance in the handling of integral and differential equations. For example, point-forces,
or short-time impulses, are frequently mathematically modelled as Dirac delta func-
tions. All expressions involving distributions, are assumed to hold under integration
with any test functionl6]{10]. More specifically, distributions are defined by a se-
quence of functions, and the property of “weak convergence”. Good functions (total
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functions that are differentiable to all orders, and taper at +o faster than any power)
play the role of “testing” a sequence of functions for weak convergence. That is, a
sequence of good functions {fu(z)}n is a distribution if

+00
lim é(z)fa(z)dz < 00 for all good functions ¢ (23)

n—oo J_ o

For a more detailed introduction of distributions, refer to section 2.4: * Proof of
Consistency: Taylor Expansion of the Delta ® unction.

We now expand é(z’ — z) in a Taylor expansion?, in terms of its derivatives about
z'"
. z?
(' —z)=6(z") -6 (') + -2—'6”(:17') + ... (24,
where 6"(z) = d—d:—" (). A “local” approximation to f(z) can be derived from Eq.(24)

in the following way. By substituting Eq.(24) into Dirac 's identity, we recover the
usual Taylor expansion of f(z) about £ = 0:

f(z) = J(0) +=f'(0) + Z:/"(0) + .. + R (z) (25)

This approximation is local in the sense that it requires derivatives of f(z) at a single
point, r = 0, and in general has a limited radius of convergence. On the other hand,
by expanding é(z — ') in a Taylor expansion about z:

2]

§(z — 2') = 6(z) — 26 (2) + %5"(1) ¥ (26)

When this series i1s substituted into Dirac s identity, We obtain
0 . M? . . -
f(z)=M"6z)- M 6(1)-{-—2—,5 (z)+ ...+ R (z) (27)

The cocflicients M™, defined by

are the centered moments of the function f(z). Therefore, Eq.(27) is an approxima-
tion of f(z) involving global information about f(z).

The global expansion of f(z) in terms of its centered moments and derivatives of
the Dirac delta function is the motivation for the introduction of hyperdistributions.

2this is accomplished in a formal way; the justification and proof-of-consistency will be given in
section 2.4: * Proof of Consistency: Taylor Expansion of the Delta Function




Definition (formal): Any “function” which may be formally written as,

f(z) =) anb™(z) (29)
n=0
with finite and real coefficients a, given by
M" : n +oo n
a, = (-1)" ~ with M" = /_w z" f(z)dz (30)

defines a hyperdistribution.

To carry on the analogy with natural numbers introduced previously, hyperdis-
tributions can be identified with the set of negative integers. Much in the same way
hyperdistributions are not smooth point-functions, negative integers do not corre-
spond to any physical reality. Indeed, we can physically represent the integer 2 by
picturing, say, two apples (or physical entities of any other sort) in our mind. But
how do we represent the negative integer -2?7 Is an “absence” a constructive defini-
tion? In spite of this conceptual difficulty, negative integers are required in simple
arithmetic, since they are inverses to the set of natural numbers for the operation
of addition. That is the reason why the space of natural numbers is extended to
the space of positive and negative integers. In a similar fashion, hyperdistributions
do not correspond to any physical reality (e.g. hyperdistributions are not smooth
-or even piecewise smooth- point-functions), yet it will be shown that hyperdistri-
butions are convolution inverses to smooth point-functions, and are thus required in
the “convolution calculus” of signals and systems. One is thus naturally led to ex-
tend the space of smooth point-functions to include highly singular functions such as
hyperdistributions.

2.2 The Convolution Group

Given any two hyperdistributions f; and f,, their linear combination Af; + yfs is also
a hyperdistribution (where A and g are real numbers):

filz) = i: a,6"(x) (31)
fo(z) = i b.6"(z) (32)
M)+ ifi(e) = 3 (an + uba)8"(a) (33)

The pt* derivative d” f(z)/dz? = VPf(z) of a hyperdistribution f(z) is also a hyper-
distribution:

VP f(z) = VP S anb™(z) = 3 bab™(c) where b, :{

n=0

0 fn<p
an-p otherwise

(34)

7




The convolution of two hyperdistributions f, * f, is a hyperdistribution:

filz) * folz) = Za,.V"cS(z) . Z%b V"6(z) (35)
- /“" (2 &v26(=) )(z_jb V¢ bz —2')d  (36)

Noting that VI__, = (—1)VY,, and with ¢ integrations by parts, we obtain:
fi@) » ) = (1P (S by [ VIS - ) (37)
p=0 p=0 -

From Dirac’s identity,
+o0
/ VPH6(2)6(z — 2') dz’ = VPH5(z) (38)

and thus Eq.(36) may finally be reduced to

filz) * falz) = z(a,,zb VPHi§(z)) (39)

p=0

or, equivalently, with r = p + ¢:

r=0 | p=0

H(z)s faolz) = 3 { 3 b} v"8(z) (40)

Since {a.},. and {b.}, are real and finite, {}:;=0 a,,b,_p}r are real and finite, and
Eq.(40) defines a hyperdistribution. The three properties in Eqs.(33), (34), and (40)
above may be thought of as “closure properties™ of hyperdistributions.

Another attractive property of hyperdistributions is their behavior under the
Fourier transform. Again taking f(z) = ¥ ,a,V"8(z), the Fourier transform car
be evaluated as:

/joo e f(z)dz = ia"/jw e **V"§(z) dz (41)
- ian(—l)"/_:om(V"c“k’)é(r)d1' (42)
= S an(ik)” (43)

n=0

where we have used integration by parts n times, and Dirac’s identity with V"e'*™ | o=
(tk)". The Fourier transform of a hyperdistribution is thus a formal power series in
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the wave-number k. Moreover, the Fourier transform of a function is the “moment
generating function”, because:

(n) o
an= (2D with M= [ enp(e)ae (44)

As a result, the definition of hyperdistributions, which requires that the coeflicients
a, be real and finite, is equivalent to requiring that its Fourier transform be a real
analytic function of the wave-number k.

Hyperdistributions allow an effective computation of the convolution inverse. Given
a hyperdistribution f, the desired convolution inverse Inv|f] satisfies

f+Inv[f]=6 (45)

where 6 represents Dirac ’s delta function, which, by Dirac’s identity, is the unit
clement of the convolution operation. We shall show by construction that if f can be
written as a hyperdistribution, then Inv[f] is also a hyperdistribution. By definition,

(f * InolfD@) = [ f&)Imolf)e —2') da’ = §(z) (46)

It is now necessary to compute the product of the sums and match coefficients. Taking
f(z) =X, a.V"(z), and Inv[f(z)] = ¥, b.V"é(z), it is seen that the computation
of the convolution inverse is effectively the determination of a collection of b, values,
given a set of a, values. Substituting into Eq.(46),

400 © , o o]
/ (S e, V26(z))(3 b,V96(z — 2')) dz’ = 6(z) (47)
0 p=0 g=0
Once again noting that VI__, = (=1)?V,, and that V?§(z) * Vi6(x) = VP+i§(z),
Eq.(47) may finally be reduced to:

r=0 | p=0

i {zr:apbr-,,} V7é(z) = 6(x) (48)

Matching coeflicients on the left-hand and right-hand sides implies that only the r = 0
term survives. The result is a linear system of equations for the & values in terms of
the a values. It is easiest to see the behavior by writing the first few equations in this
linear system,

aghy =

aghy + arbo

agby + a1 by + azby

aghs + ayby + azby + azby =

i
o o o —
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and so forth. Thus, it can be seen that, by = 1/ao, by = —a,/a2 b, = a?/ad — a2/al,
etc.. The linear system in Eq.(49) is called the Bochner algebra for hyperdistributions,
after a very similar algebra, developed by S. Bochner[12] for power series.

In matrix notation, and if ag = 1, the coefficients b,, are given by the following
Toeplitz{13] determinant:

ay 1 0 0 0
a a 1 0 0
as aj a 1 e 0
by = (—1)" (50)
1
dn dn-y Qn-2 QGp_3 s a

We note that Inv[f]is indeed a hyperdistribution, and is determined by this algorithm
up to a function with vanishing moments.

Some convolution inverses appear in the familiar context of potential theory. For
example, the "isotropic quadrupole”, which is a distribution, is the convolution inverse
of the Coulomb potential in 3 dimensions:

26() = Inv[—-
V(r) = Inv[47rr]

Other simple examples of convolution inverse pairs in one dimensional potential theory
are (| = [,8"(z)), (sgn(z),d'(z)), and (6(x),6(z)). More examples of convolution
inverses can be obtained from standard Green’s functions. For example, the one-
dimensional Helmholtz equation

%szu:o (51)

can be analyzed with hyperdistributions, as well as with Fourier transforms, to obtain
both its Green’s function and the convolution inverse of its Green’s function. Thus,

(55 + et = _ga) (52)

The Bochner algebra for hyperdistributions shows that only the terms by and b,
contribute to the convolution inverse of the Green’s function, thus yiclding:

Inv[e™¥1/?] = %6(1) - 8"(x) (53)

The result above is ecasily reprodur~d by utilizing Fouricr transforms. However, it was
shown in Eq.(19) that the convolution inverse of a Gaussian cannot be obtained with
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Fourier transforms. In contrast, that same convolution inverse can easily be obtained
through the Bochner algebra for hyperdistributions: calculation of the power moments
of a Gaussian é,(z) of width A

2

Y
yields:
400 52
ay = / e [\/TAdz
2n - 1)
/\2n (

— (55)
An41 = 0 (56)

where the double factorial involves exclusively the product of odd numbers. This
leads to the hyperdistribution expansion of é,(z):

8x(z) = i (-\%) (;lﬂv?"a(z) (57)

n=0

The Bochner algebra for hyperdistributions yields the convolution inverse of the Gaus-
sian 6)(z):

Inv[6(z)] = i (—%> (211 S9(z) (58)

In a more compact operator notation:

o(z) = etV

) (59)
) (60)

6(z
Inv[bx(z)] = e MVE§(x
In this section, it was shown that the convolution of any two hypcrdistributions
yields another hyperdistribution. Furthermore, it was proven that any hyperdistri-
bution has another hyperdistribution as its convolution inverse, provided the impulse
response can also be written as a hyperdistribution. A general algorithm for decon-
volving any hyperdistribution -the Bochner algebra- was given. As a result, hyper-
distributions provide a closure for the classical semi-group of smooth point-functions
with the operation of convolution[14]. If H denotes the spacc of Hyperdistributions,
with the space of smooth point functions embedded in it, (H, *) is an abehan group,
with the Dirac delta as the unit element. Hyperdistributions are thus an extremely
useful tool for solving integral equations of convolution-type(15].
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2.3 Function-Theoretic Definition of Hyperdistributions

The process for defining hyperdistributions parallels the Temple definition® of a dis-
tribution (generalized function) as a good sequence of good functions[4]-{11]. Good
functions are smooth and tapered. More precisely, they are total point functions that
are differentiable to all orders (C°°), and decay at +oo faster than any power. Good
functions play the role of “testing” a sequence of good functions for weak convergence.
In fact, a sequence of good functions is a distribution if

+00
JLI&/ &(z)fu(z)dz < 0o for all good functions ¢ (61)

Since hyperdistributions are conceived as “generalized” distributions, a second order
generalization of functions is in fact implemented. Consequently, a double test is
needed as a convergence criterion. This criterion is implemented by introducing very
good functions G, (z) with the following properties:

1. Ga(z) is smooth, that is, differentiable to all orders, i.e. C%.

2. Ga(z) 1s essentially compact, i.e. it has a Gaussian decay at +oo:
Ga(z) ~ lim;go Ne~= /A%,

We will assume for convenience that G, is normalized to unity:

+o00

Ga(z)dz =1 (62)
The width of G4 is defined by
A? +00
= /_w (z — 2)’Ga(z) dz (63)

A primary example of very good functions is the Gaussian, which is denoted by é,(z):

22

e a7
6\(z) = \/7? (64)
A sequence of very good functions is now introduced, defined by
HM(z) = Z aiV*8,(1) (65)

k=0

3Lighthil[10] points out that in so doing, Temple follows Mikusinski's[16][17) approach
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The sequence {H)} s, where X is a nonnegative real and n is a natural number, is a
good sequence if, for all good functions ¢ and for all very good functions Ga, there
exists a Ag such that, for all A > Ao,

N==s00

A—=0

fim [ ¢(z) () * Ga)(z) dz < oo (66)

We note that e*‘w&(a:) are hyperdistributions. The sum (hyperdistribution)
> aV*é(x) (67)
k=0

can thus be viewed either as a sequence of “good” distributions as n — oo
Y axV*é(z) (68)
k=0

or, as A — 0, as a sequence of good functions:
> aVH6(x) (69)
k=0

The latter representation is a Rodriguez ezpansion. The Rodriguez formula for Her-
mite polynomials[2] can be used to show that the derivatives of a Gaussian form
a complete set of orthogonal polynomials in an L? space. And thus the Rodriguez
expansion yields a very useful point function approximation to any hyperdistribution:

> H.(%
S ar (-1 L) g, (70)
k=0

where H,(z) denotes the Hermite Polynomial in z of order n.

The problem of “approximating” hyperdistributions with smooth point-functions
will be studied shortly.

2.4 " Proof of Consistency: Taylor Expansion of the Delta
Function

We start by quoting three useful definitions utilized by Lighthill[10] in his definition
of distributions?.

“Lighthill actually uses the terminology “generalised function™, instead of “distributions”, which
was first introduced by Schwartz[4]
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Definition ! (p. 15). A good function is one which is everywhere differ-
entiable any number of times and such that it and all its derivatives are
O(lz|™V) as | £ |— oo for all N.

Ezample 1. e~ is a good function.

Definition 2. A fairly good function is one which is everywhere differen-
tiable any number of times and such that it and all its derivatives are
O(l £ |~V) as | z |— oo for some N.

Erample 2. Any polynomial is a fairly good function.

Definition 3. A sequence f,(z) of good functions is called regular if, for
any good function F(z) whatever, the limit

im [ fu(z)F(z)dz (71)

n—oo f_ o

exists.

(...) Definition 5. A generalised function f(z) is defined as a regular
sequence f,(z) of good functions (...). The integral

+o0
f(2)F(s)dz (72)
of the product of a generalised function f(z) and a good function F(r) is
defined as oo
Jim [ fula)F(z)dz (73)

In other words, Lighthill defines distributions by a sequence of good functions
(total functions, differentiable to all orders. that taper at +oo faster than any power).
and by the property of weak convergence, which requires that the limit in Eq.(71)
cxists, for any choice of good (testing) function F(x).

We now justify the expansion in Eq.( 24) of é(z’' — r) in a Taylor series. in terms
of its derivatives about z’ (since é(z’ — ) is technically a distribution. and not a
point-function, such a justification and proof-of-consistency is required). The Taylor
expansion-with-remainder of é(z' — r) about x™:

' [ oo 1"y ot 'Ti'_l (N=1), 1 N -
Mr' —r)=68x")Y+xé6(r)4 8"(2") 4 ...+(~Ky~——]—?6‘ (r)+ It (74)
To be consistent with Lighthill's definition of distributions, We are required to test
Eq.( 71) for all available good functions ¢(z):

l\'_‘ N

4+ + 20 .
/ 8(z' — r)é(z')dr’ :/ {Z L sy + ’(‘\}O(I')d.r' (75)

!
ne0 mn.
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By Dirac’s identity (Eq.( 22)),

N-1 P

¢(@)= > =4(0) + RY where RV = /_ RN () d! (76)

|
n=0 n.

and we recognize Taylor’s expansion for the test function ¢(z). If such an expansion is
indeed legitimate for all test functions ¢(z), then Eq.( 74) is justified and consistent.
However, Lighthill does not require of test functions that their Taylor expansions
converge, or, in other words, that all test functions be real-analytic.

Theorem of Consistency for Hyperdistributions: In restricting the space of
test functions to good functions that are real-analytic (i.e. C*), Eq.( 74)
is justified, and the introduction of the hyperdistribution sum in Eq.( 29)
1s consistent.

It might seem paradoxical that by restricting the space of Lighthill test function (from
C* to C*¥), we expand Lighthill's space of singular functions to include hyperdistribu-
tions, which are even more singular than distributions. In fact, this is a consequence
of the “dual” behavior of Lighthill’s regular sequences and Lighthill’s test functions
under the weak convergence property. Since the limit

lim [ fu(z)F(z)dz (77)

n—oo J_

must exist, extending the space of regular sequences f,(z) nccessarily restricts the
space of available test functions F'(z).

2.5 Approximating Hyperdistributions with Smooth Point-
Functions

In this section, we will parallel Lighthill’s approach in defining the delta function by
a scquence of narrowing gaussians. We will introduce a sequence of smooth point-
functions, whose limit is in fact a hyperdistribution. These smooth point-functions
will then be the focus of section 3: Hermite-Rodriguez Wavelet Analysis.

2.5.1 “Diffusing” Hyperdistributions

It is observed thai by formally convolving a hyperdistribution ¥02,a,V"é(x) with a

Gaussian of width A:
7222

NG,

oi(z) = (78)
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one obtains an infinite series of derivatives of Gaussians:

Za,,V"J(:I:) *x 8(z) = Zan{V"6(z) * 65(z)} = Z a,V"6,\(z) (79)
n=0 n=0 n=0
The first equality is a formal one. The proof of the second equality follows from the
application of the chain rule to the operator V}__., n integration by parts, and Dirac’s
identity:

400
V(<) * i{z) = /_ V__&(z — 2')6x(z") dz’
+o00
= (-1)" / Vn8(x — 2')6(z') dz’

400
= (=1)* /_w 8§z — 2')V%Lé\(z') d’
= V"i\(z) (80)

In other words, diffusion “maps” hyperdistributions, which are singular functions,
into series of smooth point-functions. This result is not surprising. Diffusion is a
smoothing operation, and is expected to map singular functions into smooth fu:ictions.
This is indeed the case for Schwartz distributions: Picture a single Dirac delta as the
initial condition (at ¢ = 0) of a diffusion process in time. The 1+1 homogenecous
diffusion equation can be written as

— —Vu=0 81

ot (81)
The initial-condition Green’s function G(z) for such a diffusion equation is the
Gaussian[22] G,(z) = &, 4(x). In other words, if f(z) is the initial condition to
the diffusion process, the solution of the diffusion equation at time ¢ can be written
as:

u(z,1) = Gi(z) * f(z) = 8,1 * J(2) (82)
or, in operator form[23],
u(z,t) = eV f(z) (83)
Since in this case f(z) = §(z), we have
u(z,t) = Gy(z) * 6(x) = 8, si(z) * §(z) = 62ﬁ(1) (84)

The last equality follows once again from Dirac’s identity. In other words, at ¢t = e,
for any ¢ > 0 however small, a Dirac delta is “mapped” into a Gaussian of width
V2t by the diffusion equation. Similarly, it can be proven using Eq.(80) that a finite
derivative of a Dirac delta, gets mapped to the derivative of same order of a Gaussian
of width v/2¢, by the diffusion equation:

u{z,t) = Gy(z) « VP§(z) = 62ﬁ(x) * VP6(x) = VP, 4(x) (85)
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We now return to hyperdistributions, by picturing an infinite number of Dirac delta
functions, all centered at the origin, and with different amplitudes a,, that is: 332, a,V"6(z),
as an initial condition to a diffusion process. That hyperdistribution will formally dif-

fuse at time t > 0, however small ¢ may be, into the following functional series:

i a. V"6, si(x) (86)

n=0

In other words, diffusion maps hyr erdistributions into series of smooth point- functions.
If the series converge, we can say that diffusion maps hyperdistributions onto the space
of smooth point-functions. The sufficient conditions f~~ convergence of the series in
Eq.(86) remains however to be investigated.

To this end, the Rodriguez formula for Hermite Polynomials[2]:

2

(=1)"Hp(z)e " = V"e™® (87)
can be rescaled as follows:
(=1)"Ha(z)8x(z) = V"éx(z) (88)
where
1)(z) = 223 (59)
And thus Eq.(86) becomes a series involving Hermite Polynomials:
3 an(=1)" HY¥(2)6, () (90)
n=0

Unfortunately, the series above is not a classical Hermite series, since the coefficients
a, are centered power-moments given by Eq.( 30) (weighted by monomials in r,
and not by Hermite polynomia's) As a result, one cannot use the standard tools
of Christoffel-Darboux theory[2], which yield the sufficient conditions for the conver-
gence of Hermite series[2]. The task that lies ahead is to transform t: e series in Eq.(90)
into standard Hermite series by relating the centered power-moments [*> z" f(z)dz
to the centered Hermite moments [*%° H,(z)f(z)dz, where H,(z) denotes the Her-
mite polynomial of order n. That is the purpose of the C-matrix transform, which
will be studied shortly.

2.5.2 Hermite-Rodriguez Expansions
We now expand the function f(z) directly in terms of Hermite polynomials. Hermite

polynomials constitute an orthogonal set of basis functions for the appropriate L?
space, and such an expansion is thus legitimate. We start with the expansion of f(r)
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in terms of derivatives of the Gaussian of width X, with yet unknown coefficients (or
moments) by:

+00
f(z) = X_: b, V"6x(2) (91)
where \
e“f"
6A(1') = (92)

NZ:
With the use of the Rodriguez formula for scaled Hermite polynomials derived in
Eq.(88):
(=1)"H}(z)br(z) = V"6x(z) (93)
with i \
H)(z) = 22A2) (94)
We substituteV"6y(z) in Eq.(91) with the expression in Eq.(93). Eq.(91) becomes:

+00
f(z) =3 ba(=1)"H)(2)r(2) (95)

n=0

We now utilize the orthogonality of Hermite polynomials:

+00
/ Ho(z)Hol(z)e " dz = /72 060 (96)
where 6,,, represents the Kronecker delta, whichis 0 if n # m and 1 if n = m.
We multiply Eq.(95) with H2(z) and integrate from -oo to +0o. Assuming the sum
in £q.(95) converges, We can interchange the integral and sum symbols, and utilize
Eq.(96) to obtain:

A?n 00
(=1)"b, = ﬁf; f(2)H (z)dz (97)

The coeflicients b, above are called the Hermite-Rodriguez moments of the Hermite-
Rodriguez expansion of f(z):

f(z) = S (=1)"ba HA (2)6(2) (98)
n=0

hercafter denoted as the HR expansion of f(z) with weight A. The weight parameter
is a novel feature of HR expansions, when compared to standard expansions in terms
of complete sets of basis functions. The standard expansions do not contain a free
parameter. This parameter may be employed to speed-up the convergence of HR
cxpansions. In other words, for every function f(z) to be approximated by an HR
expansion, there exists one (or possibly more) choice(s) of the weight A for which the
HR expansion converges to a good approximation of f(z) with a minimum number
of partial sums.
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2.5.3 Power Moments, Hermite-Rodriguez Moments, and the C-Matrix
Transform

We now relate the centered power moments of a function f(z):

0, = U / :” " f(z) dz (99)

n!

with the Hermite-Rodriguez moments of the same function:

1 nXZn
=0 [ e e de (100)
By utilizing the classical power-series expansion of Hermite polynomials|2]:
[n/2] 2n-2p 2
H,.(z) =n! P 101
(z) Z:O =2 (101)

where [n/2] denotes the natural number inferior or equal to the rational n/2, and by
substituting Eq.(101) in Eq.(100), we obtain:

1} A" {n/2] 2n—2p
0= S [ e e o
~2p)!
and thus,
\ [n/2) /\‘2p
by =3 (~1) gz a2 (103)
p=0 °
In matrix notation:
bé ag
b a
B | =¢ ! (104)

where the matrix C* is lower-triangular, and is given by:

2-1(52)

(105)

C = (-1)7 22 if (i — j) is even and positive
otherwise

The determinant of C* is always equal to 1. As a result, one can always transform an
HR expansion of f(z) into a power-moment series expansion of the same function, and
vice-versa. The problem of convergence of the series in Eq.(90) has effectively been
reduced to the problem of convergence of Hermite expansions. Christoffel-Darboux
theory[2] then yields sufficient conditions for convergence of Hermite-Rodriguez ex-
pansions.
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2.5.4 Approximating Hyperdistributions with Hermite-Rodriguez Expan-
sions

f(z) is expanded as a hyperdistribution:

f(z) = fj 0. V"6(z) (106)

n=0
where

a, = (_nl!)" /::o z"f(z)dz (107)

That hyperdistribution is then approximated with a Hermite-Rodriguez series of
weight A:

f(z) = f: BAV"65(2) (108)

n=0
where the Hermite-Rodriguez moments b, are given by the two equivalent equations
below:

_1\n)\2n oo
B = (——21-3-7;—/' f(z)H) (z) dz (109)
& = CL [ eya
with 8} = (C).) am (110)

The sufficient condition for convergence of Hermite-Rodriguez expansions is given
in the following section.

2.5.5 Convergence of Hermite-Rodriguez Expansions

Christoffel-Darboux theory|[2] yields the sufficient condition for convergence of Her-
mite series:

ch a(z) with = — '\/'/ ), (z) dz (111)

converges to f(z) if the following condition is met[2]:
+o00 2
/ e " f3(z)dz < 0o (112)

[lermite-Rodriguez expansions are of the form

ibn&‘&%@&)(z) with b, = EA:—, W )M dr (113)
n=0
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n

criterion for Hermite Rodriguez expansions is obtained. It is the following sufficient
condition. The series in Eq.(113) converges if the following condition is met:

By multiplying Eq.(111) by 6—3@ and by rescaling from z to z/)\, the convergence

+oo
/ =¥ f2(z)dz < 00 (114)

2.6 Hyperdistributions in 2 Dimensions

The generalization of hyperdistributions to two spatial dimensions is now introduced.
Formal expressions of the type

F@) =3 S tun VIV 6(2,9) (115)

n=0m=0

which are called nyperdxstrlbutlons form an algebraic field. V; and V7' respectively
denote the n** and m* partial derivative operators in the z and Yy ulrecuons and
6(z,y) denotes the 2D Dirac delta function:

6(z,y) = 6(z)é(y) (116)
The coefficients ay,, are given by
_ =y / +o pnym
anm = i [ 2"y f(z,y) dedy (117)
If f(z,y) is convolved with
9(z,y) =3 bum VIV 6(z,y) (118)
n=0m=0

through the usual convolution product *, the result is once again a hyperdistribution,

with coefficients given by
c=axb (119)

This is the discrete convolution product, which can be written explicitly as

= Ezan—p,m—qu (120)

p=04¢=0
To prove the above formula, we observe that
(VI V7 8(z,y)) * (VEV] 8(z,y)) = VP VI §(z,y) (121)

which can be verified by repeated integration by parts. The algebra represented by
Equation (120) is the 2D Bochner algebra[12). This constitutes an cfficient means to
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deconvolve 2D images. In particular, the coeflicients of the convolution product are
given by

agobpo = coo

ajoboo + aoobio = co

anboo + @by = co

aoobry + ao1bio + arobo; + anbe = cn
a20boo + arobio + aoode = 20

ag2bo0 + aorboy + agobpz = o2
(122)

The algebra is straightforward, as one notices that each c¢;; is the sum of all configu-
rations in (p,q,7,s) of the products aped,s, where p+r =i and ¢+ s = 3.

If a deconvolution is to be carried out (i.e. to determine the original image after
it was convolved with a filter function), the coeflicients b;; and c,; are known. Indeed,
the coeflicients are respectively the 2D moments of the filter function and those of the
degraded image. This is a straightforward generalization to two independent variables
of similar results in one dimension. The unknown coefficients a;; are determined by
the linear system in Eq.(122). Their solution can be obtained rapidly with Gaussian
elimination. Once the moments a;; of the original image are determined, the image
can be reconstructed by approximating the resulting hyperdistribution with an HR
expansion, much in the same way it is done in one dimension. If, on the other hand,
one is simply looking for the convolution inverse to f, that is to determine g such that
f*g=46(z,y), then cgo =1 and cpm = 0 for all (n,m) # (0,0); and the cocflicients
b;; are once again casily determined.

3 Hermite-Rodriguez Wavelet Analysis

3.1 Introduction

Wavelets are an exciting new technique for solving difficult problems in mathemat-
ics, physics, and engineering. Applications are as diverse as seismic exploration,
data compression of digitized signals and images, the detection of submarines, and
improvements in CAT scans and other medical imaging technologies. Wavelets al-
low complex information such as speech, music, photographs, or video images, to
be broken down into fundamental building blocks ~the wavelets-, and subsequently
reconstructed with high precision.

A rccent article in Business Week magazine (Feb. 3 1992), entitled ‘Wavelets are
causing ripples cverywhere’, emphasizes:
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Catching the Wavelet- A dazzling theory of mathematics is leading to ad-
vances in: data compression (Wavelets identify key features of an image,
allowing engineers to reconstruct a photo with only a tiny fraction of the
information in the original), scientific calculation (Wavelets may help de-
cipher phenomena such as turbulence- leading, for example, to improved
aircraft designs), signal analysis (the new method makes it easier for mili-
tary radar to spot hidden tanks), and medical imaging (scientists are using
Wavelets to produce magnetic resonance pictures of the body faster and
more accurately).

The decomposition of signals and images into a set of fundamental building blocks
is not however a new concept. Fourier analysis is such a decomposition. Fourier
methods decompose a signal into a series of sines and cosines. The discrete set of
fundamental frequencies (the “building blocks”) and their corresponding amplitude
completely describe the initial signal, provided some care is taken in the discrete
sampling procedure. Various properties {e.g. the convolution property) combine to
make Fourier analysis a very attractive and useful mathematical tool.

Wavelets are however an entirely new set of building blocks that present a number
of new features. One advantage of the new wavelet theory lies in its ability to zoom
in on details -much like a camera with a zoom lens- by probing signals at different
scales of resolution. Yet another advantage lies in the digita! processing of signals
and images: by processing the elementary building blocks, instead of the signal or
the image, the processing part is simplified, and new insights are gained.

A novel parametric expansion, called Hermite-Rodriguez expansion, has been in-
troduced as functional approximation to a new class of highly singular functions:
hyperdistributions. The approximation is similar to the way a Gaussian of narrowing
width is a Lighthill approximation[10] to the Dirac delta “function” §(x); that is, the
limit of the sequence of Gaussians of narrowing width is the Dirac delta function:

e_zz/AZ
VTA

We will now prove that the underlying basis functions which generate Hermite-
Rodriguez expansions are in fact wavelet functions|27).

lim
A=

The HR expansion of a function f(z) is written as:

>}
fl(z) = a,V"éi(x) (124)
n=0
The Rodrigucz formula for Hermite polynomials[2] is then used to obtain:

f(z) = ianlf,,(x/)\)éx(.r) (125)

n=0
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with

+00
T /_ " J(2) Ha(z/X) dz (126)

where H,(z) denotes the Hermite Polynomial in z of order n. We now redistribute
2" and n! in the following way:

= 3 a, B )6r(z) where an = / H(y) f(y)dy (127)

n=0

where

Ha(z/))

oni2\/nl
By using a well-known(3] bound on Hermite Polynomials, it can be shown that the
Hd Polynomials are bounded in n:

Hd\(z) = (128)

| Hd)\(z) |< ke*/** where k = 1.086435 (129)
Furthermore, the Hd Polynomials are orthogonal in the appropriate L? space, with
+o0 "1'2 22
< Hd  Hd, > = / Hd(z) Hd (z) Tey 4 = Vb (130)

where §,,, denotes Kronecker’s delta; the generative recursion relation for Hd Poly-
nomials becomes:

Ifd,*,(x):\/E Hd_(z) - ‘/n;IHd,':_z(:r)

with Hd)(z) =1 and Hd)z) = —\{gx (131)

The following “analyzing”{27] smooth point-functions are now introduced:
W2 (z) = Hdy(z) 6x(2) (132)

These functions present the following properties:

1. WX(z) is a function of class C".

2. W2(z) has a rapid Gaussian-like decay at infinity. In other words, the support
of the function is said to be essentially compact.

WX(z) is called the Hermite-Rodriguez (HR) wavelct[27) of order n and weight A.
The Hermite-Rodriguez (HR) expansion of a signal f(z) is given by

= i a.W)(z) where a, = /+m Hd(z)f(z)dzx (133)
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A sample of the set of HR wavelets {W2(z)}, with A = 2 are displayed in figure 5.

In a similar fashion, the HR expansion of an image I(z,y) with weights A and u
is given by

00 o0 400
Hz,9) =3 Y aumWOH(z,y) where apm = // Ha (2) Hd" (y)1(z,y) dzdy

n=0m=0
(134)
with a similar convergence condition on weights (A, 1), and with the 2D HR wavelet
function defined as the tensor product of the two 1D independent HR wavelet func-
tions:
W) (z,y) = WNz)WE(y) (135)
A sample of the positive part of the set {WN(z y)},, for A = 2 is displayed in
figure 6, with grey scales replacing the ordinate values.

Hermite-Rodriguez wavelet expansions preserve the classical properties derivable
for orthogonal polynomial expansions (as opposed to power series), but also add an
important new feature: the weight parameter A. The convergence condition derived
previously from Christoffel-Darboux theory holds generally on a semi-infinite range
of A. This freedom can be utilized to optimize the rate of convergence of the HR
wavelet expansion. HR wavelet expansions are also found to be robust with respect
to numerical errors on the HR moment coefhicients. In other words, if small errors are
committed on the exact values of the moment coeflicients (for example by quantizing
the moments from double-precision reals to reals with one or two decimal places, or
even to integers), the convergence properties of the resulting wavelet expansion do
not suffer.

3.2 Hermite-Rodriguez Wavelet Expansion of a Gaussian

The Hermite-Rodriguez wavelet expansion of a Gaussian of unit width is given by:
=3 SR (136)
2371/2\/—— 2“

A proof based on linear operator relations is as follows. It can be checked by differ-
entiation in { and z that

6—12/4t 2
Jis = €'V §(z) (137)
Letting
4t = \? (138)
We can write
6_1-2/,\2 pYiva
_\/_;T =e /46(.’1‘) = 6,\(1’) (139)
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Consider the identity

TME(z) = EVNVg(g)
- el-txzvz(e’\zv”q&(a:))

= SV (2) (140)

Expanding the right-hand side,
2 o /\2 n
TMEE) = T VR = T S W) (141)

This method of proof provides a useful check on the numerical calculations of HR
moments.

3.3 Hermite-Rodriguez Wavelet Expansions in One Dimen-
sion

In this section, the convergence properties of Hermite-Rodriguez wavelet expansions
are investigated. To this end, we introduce a set of 80 artificial “landscapes”, the first
16 of which are displayed in figure 7. These landscapes are generated by summing 5
Gaussians whose widths and offsets are generated randomly in the range [0.1,1] for
the widths, and [-3,3] for the offsets. The landscapes are plotted roughly within the
support of three standard deviations, ie. in the range [-6,6]. In other words, if L,
denotes the n'* landscape, then:

L"(I) ZZ(S,\.(I—I,') (142)

where 6)\(z) denotes the Gaussian of width A, and (A;,z;) are computer-generated
pseudo-random variables with respective ranges [0.1,1] and [-3,3]. All landscapes are
then rescaled to unit height. Each landscape is sampled by 501 datapoints (501
numbers in the range [-6,6]).

If all 5 widths or all 5 offsets are close together in their respective values, the
associated landscape is labeled “realistic” (ie. the landscape resembles a realistic
mountain or mountain range), while if on the contrary, the 5 widths and offsets are
spread out in range, the generated landscape is labeled “futuristic”.

Although Hermite polynomials of high order are known to diverge polynomially
(z", “whipping-tail”) as their order n increases, the Hermite-Rodriguez wavelets of
high order are well-behaved, and decreasing in modulus. More specifically, a classical
bound of Hermite Polynomials(3] yields:

-r2/222

| W(z) |< k <—=— where k = 1.086436 (143)
n ﬁA
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Figure 8 displays the HR wavelets of orders 1000 and 10000.

In Figure 9, a shifted Gaussian (centered at z = 2), of width A = 1/2, renormalized
to unit height, denoted by Lo(z), is approximated with a Hermite-Rodriguez wavelet
expansion Aj(z) of weight A = 1, with N** partial sum:

N +6
AY(z)=)_a;W)(z) where a;= /_6 Lo(z)Hd}z) dz (144)

=0

where

Hi(z/})
2n/2/nl
and H;(z) denotes the Hermite polynomial of order i. The expansion is seen to
converge. The 40** partial sum already closely approximates the original Gaussian.

Wl z) = Hd)z)éx(z) and Hd})(z) = (145)

In figure 10, a futuristic-looking landscape {landscape #68 and denoted by Lgs(z))
is approximated with a Hermite-Rodriguez wavelet expansion of width A = 1. The
300*" partial sum closely approximates the original landscape. A high number of
partial sums is required for the capture of high frequency contents.

In figures 11 and 12, a less futuristic-looking (but still futuristic) landscape (land-
scape #71 and denoted by L7;(z)) is approximated with a Hermite-Rodriguez wavelet
expansion for two different values of the weight A: 1.0 and 1.15 respectively. The
140** partial sum for A = 1.15 quickly approximates the original landscape, while
the wavelet expansion for A = 1.0 has a much slower convergence rate. This free
parameter, can thus be utilized to improve rate of convergence. Figures 13 through
17 emphasize the critical role of the weight parameter A in improvine the conver-
gence of Hermite-Rodriguez wavelet expansions. Figure 18 displays the robustness of
HR expansions, when HR moments are rounded off. The rate of convergence of the
quantized wavelet expansion is only very slightly modified.

It can be observed that landscapes with an increasing number of higher frequencies
require an increasing number of partial sums for accurate HR wavelet expansion
representations. This was expected for HR wavelet expansions, which are of global
nature (moment expansions vs. Taylor expansions), and capture global behavior very
fast, while they are slower in capturing sharply localized features.
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3.4 Hermite-Rodriguez Wavelet Expansions in Two Dimen-
sions

In a similar fashion, the HR wavelet expansion of an image I(z,y) with weights A
and g is given by

00 00 +o00
1@,9)= 3 ¥ awmWi(z,y) whete aum = [ Hd)(z) Hds(y)1(z,y)dzdy

a=0m=0
(146)
with the 2D HR Wavelet function defined as the tensor product of the two 1D inde-
pendent HR Wavelet functions:

W (z,y) = W (z)Wa(y) (147)

A sample of the positive part of the set {W Y (z,y)} .. for A = u = 2 is displayed
in figure 6, with grey scales replacing the ordinate values.

A set of 80 artificial “nebulae”, the first 16 of which are displayed in figure 19.
These nebulae are generated by summing 5 2D Gaussians whose widths and offsets
are generated randomly in the range [0.2,1]x[0.2,1] for the widths, and [-2,2] x[-2,2]
for the offsets. The nebulae are plotted within the range {-6,6] x[-6,6]. In other words,
if N, denotes the n** nebula, we have:

5
No(z) = brn(z — 2iy — i) (148)
=1
where 6,, .. (z,y) denotes the 2D Gaussian of width A; and g, which is the tensor
product of two 1D Gaussians:

g s

[

Sonlesd) = 75 T
and (A, u;) and (z,,y;) are computer-generated pseudo-random variables with respec-
tive ranges [0.2,1] and [-2,2]. All nebulae are then rescaled to unit height. Each nebula
is sampled by 64 x64 datapoints.

R

(149)

4 Green’s Function for the Antidiffusion Equa-
tion

In this section, we repeat in more detail two proofs given in sections 1 and 2. Namely
that Fourier transforms do not provide us with a Green'’s function for the antidiffusion
equation (i.e. a convolution inverse of a gaussian), but that, in contrast, there is a
simple hyperdistribution representation for that same Green's function. We then
attempt to reconstruct images corrupted with gaussian blur by letting the blurred
images evolve freely as initial conditions of the antidiffusion equation.
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4.1 Antidiffusion and Fourier Transforms

Consider the Gaussian filter G(z,t):

~

z

e 1t
Vint

We suppress the spatial variable z if confusion does not arise, and denote G(z,1)
by G(t). We have shown in section 1.2 that an attempt to evaluate an explicit
representation of the convolution inverse of G(t) from Fourier transforms yields:

1 ta —ikz+k?t

— hd dk 1

o). e (151)
x2

4:\7;{[erf(i\/za + Q_x\/__t) +erf(ivVia—

where erf(z) denotes the error function|[3]. Proceeding formally,
Inv[G(t)] = limg—o F(a,z,2t), which was shown to diverge.

G(z,t) =

(150)

F(a,z,2t) =

(152)

I
m)]

G(t) is asmooth point function for nonegative values of t. By contrast, Inv[G(t)]is
not even a distribution, since it does not exhibit weak convergence[4]-[11]. Specifically,

12 . . .
its integral over the Gaussian test function €™+ diverges. Proceeding with the use of
Fubini’s theorem([25] on the interchange of the limit and integral sign,

/+°o e‘% lim F(a,z2¢) dz = lim e ek2'/+oo e‘é“ikr dz dk = lim 4av7t — +oo
—o0 a—00 a—oo J_, — 00 a—o00

(153)
In other words, the convolution inverse of a Gaussian filter as given by Fourier trans-
form methods is not a smooth point-function.

4.2 Antidiffusion and Hyperdistributions

In the previous paragraph, it was proven that Inv[G(t)], as obtained by Fouricr
transform methods, is ill-defined. By contrast, we can give an explicit representa-
tion of Inv[G(t)] using Lyperdistributions. The Green’s function for the diffusion
equation[21][22] can be written[23] as

G(z,t) = eV é(x) (154)

where é denotes the Dirac delta function, and which, for ¢ > 0, converges to the
well known Gaussian given above in Eq.(150). The function G, also called the initial
condilion Green’s function[24], has the properties

9 6la,0) = ViGla,t) . Glz,0) = 8(2) (155)
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We note that the two infinite series of distributions:

eV 6(z) = f; %(t tV3)"§(z) (156)

n=0 """

are hyperdistributions. Furthermore, the expressions are inverse to each other under
convolution, as can be checked by the Bochner algebra for hyperdistributions. The
convolution inverse Inv[G(t)] of the Gaussian is now readily obtained using Eq.(154).
Thus

8(z) = (e’ &(x)) * Inv[G(t)] = €'V (6 » Inv[G(t)])(z) = ¢V Inv[G(t)]  (157)
from which we conclude that
Inv[G(t)] = etV §(z) (158)

We note the rel-tion of the convolution inverse Inv[G(t)] to the time reflected solution
of the diffusion equation:

Inv[G(t)] = G(-t) = G7(¢t) (159)
where 7 denotes "time reflected”. The quantity G7(t) satisfies the equation:

%G”(t) =-V3GT(t) , GT(0) = §(=) (160)
and therefore Inv[G(t)] is the fundamental solution of the antidiffusion equation
(time-reversed diffusion). The sequence {F(a, z,2t)}, plotted in figure 4 can be shown
to define the same Hyperdistribution given by Eqs.(156) and (158). The sequence in
Eq.(156) is analogous to the sequence that defines é(z) in terms of narrowing Gaus-
sians. Both G and Inv[G) have analytic power series in wave-number space with
Eq.(156) as Fourier images. This is not accidental; in fact, hyperdistributions have
the algebraic properties of formal power series, since the Fourier transform of hyper-
distributions is a power series in the wave-number k.

4.3 Antidiffusing Images Corrupted with Gaussian Blur

We have shown in the previous section that the Bochner algebra for deconvolving hy-
perdistributions leads to a theoretically possible reconstruction of waveforms blurred
by a Gaussian filter by antidiffusing the blurred waveform for an appropriate duration
of time. In this section, we will go through the proof in more detail.

Suppose an image is blurred by convolution with a two-dimensional Gaussian filter
of width A. The convolution inverse to the Gaussian filter is obtained with the help
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of the Bochiner algebra for hyperdistributions. The 2D Hermite-Rodriguez moments
of a normalized Gaussian filter §,(z,y) of width X are given exactly by

_’2 2 2(n+ .
fr+oo e~ dz dy (2":2"2'),23\%:,,:;,), if n and m are even.
Anm = - = 2/t .
j/-oo VA 0 otherwise.

(161)
Thus, the hyperdistribution expansion of the Gaussian filter:

S e

6,\(1,1]) = ZZ nmvné(x)vmé(y)
_ §+oo A4 i Vz"V2’"5(z)5( ) (162)

n=0 m=0
which can be separated in the form
+o00 A‘ 9 +o00 /\4 9
52(z,y) = { S (S ) v )} { > (G ,V;’*é(y)} (163)
n=0 m=0 :

The above double .n can be written in simple operator form as
5x(r,y) = ¥ TH6(2)e ¥ THa(y) = ¥ T 5(2)8(y) (164)

The convolution inverse Inv[é,] of 6, is now easily determined through the 2D
Bochner Algebra. More specifically, it represents a special simplifying case where the
2D algebra reduces to the product of two 1D Bochner algebras. That is because the
above hyperdistribution of two independent variables breaks down into the product
of two hyperdistributions of a single variable (respectively = and y). as can be seen in
Eq.(163). This is not surprising; a two-dimensional Gaussian is separable in its two
independent variables. Thus, for all su:h “radial” filters, the Bochner algebra reduces
to the product of two 1D algebras:

{Saaf{Eam] (169

where the superscripts ! and ? refer to the respective independent variables = and y.

The convolution inverse to é, is then easily determined (see appendix A) to be

+00 400
Inolsl(z, 1) =Y 5 (- )"+m lm VUG (z, ) (166)
n=0m=0 n.m.

which can be written again as
Inv|é\)(z,y) = e'éi_‘u&(x,y) (167)
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Thus, filtering an image I(z,y) with 6\(z,y) yields the blurred image J(z,y)
where

J(z,9) = 6a(z,y) * I(z,y) = €¥ T 6(z,y) » I(z,y) = € ¥V I(z,y)  (168)

And finally, reconstructing the image I(z,y):

A4

I(z,y) = J(z,y) » Inv[83)(z,y) = e ¥ T 8(z,y) + J(z,y) = e ¥V J(z,y) (169)

The use of linear operators allows simple representations for all the quantities in-
volved.

Eq.(169) can then be further simplified with the help of Taylor expansions in the
following way. Write down A*/8 as a finite sum of equally small quantities. Then
M/8 = Y7 o Ak and

at

Iz,y)=¢¢ vzJ(:zc,y) = e‘Z:-o A"V:J(:r:,y) = H {e'A"sz(z,y)} (170)
And since Ay is small, e=2¢V* can be approximated to first order by its Taylor ex
pansion:

eV =1 - AV 4+ O(AY) (171)
Eq.(170) can thus be approximated to first order by:

Iz.9) = T {J(2,9) - AV (2, )) (172)

where the subscript k£ in A has been dropped. It can now be shown that the origi-
nal image can be recovered by running a fime-reversed diffusion with the degraded
image J as initial condition. The normalized time-reversed diffusion equation (or
antidiffusion) can be written as

0
—J+ V= 17
6tJ +ViJ=0 (173)
and can be forward-discretized in time as
J, - J -
——-—t+AtA ! = —V2J¢ (1 ‘4)
or equivalently as:
JH-A! = Jt - szjg (175)

Equations (172) and (175) are one and the same, and therefore the original image can
theorctically be reconstructed by applying a time-reversed diffusion on the degraded
image with a very small time-step (so that Eq.(171) holds to first order). Higher-order
corrections to our approximation can be implemented by expanding the exponential
in Eq.(170) to higher order.
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We now discretize the 2+1 antidiffusion/diffusion equation with diffusivity +u:

%ﬂ:uvzu=0 (176)

in the following way. The infinite plane is sampled at locations on a square grid:
u — uf‘j (177)

where the subscripts ¢ and j represent the spatial location of a mesh point, and the
superscript k represents the time index. The continuous operators V2 and 3/t are
replaced by the discrete approximations:

Ouk, ukl — ok

¥) i ]
T — 5, (178)

where &, represents the discretized time-step, (this is a forward-in-time discretization
scheme, with an error of the order of 6?), and

aYutlo +8 Y ut|o +yul;

Viuf, 17
Uy; — (o + B)é2 (179)
where 6, represents the discretized space-gap, and
7= —4(a + B) (180)

¥ u* |o represents the sum of all immediate neighbors of u*; forming a diamond pat-

tern centered at uf;, and 3" u* [o represents the sum of ali immediate neighbors of
uf—‘j forming a square pattern centered at ufj (this is a central-in-space discretization
scheme, with an error of the order of é2). The configuration of neighbors forming a
diamond pattern is called the diamond stencil, while the configuration of neighbors
forming a square pattern is called the square stencil. This central-in-space discretiza-
tion of the continuous operator V? is carried out in appendix B. How is the ratio
a/B to be chosen[28]? In other words, what is the weighting of the diagonal and the
square neighbors in the discretization of the operator V2?7 It is found that the best
scheme involves weighing diamond and square stencils based on their mesh-distance
from the central grid-point (square neighbors are by a factor v/2 further apart from

the central grid-point than diamond neighbors):

afB=V2 (181)

The numerical values chosen in the discretization are the following. é; must be
small for the approximation in Eq(171) to hold to second order, and é; must be small
for the approximation in Eq.(179) to hold to fourth order. More specifically, we have
chosen v = 1 L¥|T, 6, = 12/65L, § = 1.7 x 107®T, where L is a unit of length,
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and T is a unit of time. The values of ¢ specified in the figures have been rescaled to
higher values for ease of comparison. In order to relate these diffusion durations to
the duration of time T responsible for the diffusion €TV’ I(z,y) of the image I(z,y),
divide t by the factor 0.0085.

In figures 20 through 23, images of the letters “T” and “E” are diffused, and
a reconstruction is attempted by antidiffusing the blurred images. If the diffusion
duration is too long, the attempted reconstruction fails.

In figure 24, an initial pattern in the shape of a spiral is diffused, and a recon-
struction is attempted for increasing amounts of diffusion duration. Once again, it is
observed that if the diffusion duration is too long, the reconstruction fails.

In figure 25, the effect of noise on reconstruction by antidiffusion is analyzed. An
intial pattern in the shape of a letter “T” is diffused for a certain amount of time. A
2D field of pseudo-white noise is generated with a random-number-generator. That
field is subsequently added onto the diffused pattern at a proportion given by the
Signal-to-Noise Ratio (SNR). The resulting pattern is subsequently antidiffused for
the appropriate amount of time, and the resulting reconstructions are displayed.

We conclude by noticing that the reconstruction by antidiffusion of blurred images
is an unstable algorithm, with the noise-content of the image (or numerical round-off
errors) as the source of the instability. Each mode is exponentially amplified in mag-
nitude with antidiffusion. The Signal-to-Noise Ratio thus plays a critical perturbative
role. The reconstruction process breaks down if the width of the Gaussian filter is
too wide (i.e. if the diffusion and thus antidiffusion durations are too long: figures
21, 23, and 24), or if the Signal-to-Noise Ratio is too low® (figure 25).

In the next section, we will approximate hyperdistribution sums with Hermite-
Rodriguez Wavelets, and once again attempt to reconstruct signals and images cor-
rupted with gaussian blur, in the difficult case of low Signal-to-Noise Ratios. We will
then generalize my results to include the case of non-gaussian blur.

5 Deblurring with Hermite-Rodriguez Wavelets

5.1 Introduction

In the previous section, we have concluded that deblurring by discretization of the
antidiffusion equation is a chaotic process, since numerical errors increase exponen-
tially with time. In other words, antidiffusion is extremely sensitive to noise, and an

Sround-off error in the computation is equivalent to noise added onto the blurred imnage. The com-
putation is implemented with double-precision fortran real variables, corresponding to a phenomenal
10'® SNR, as long as the blurred image is free of any other kind of noise
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extremely high Signal-to-Noise Ratio (SNR) is necessary for reconstructing a blurred
image via antidiffusion{14]. In this section, we modify the antidiffusion algorithm by
expanding the blurred waveform in the form of a Hermite-Rodriguez wavelet expan-
sion. The antidiffusion is then carried out on the building blocks of the expansion —the
HR wavelets—, as opposed to the waveform as a whole. Hermite-Rodriguez wavelets
are known exactly, and can thus be more successfully antidiffused when the blurred
waveform is corrupted by noise. The noise enters effectively only on the Hermite-
Rodriguez moments, which are constant and remain unchanged by antidiffusion. This
deblurring procedure is found to be more robust with respect to noise. Artificial 1D
signals (“landscapes”) and artificial 2D astronomical images (“nebulae”), which have
been blurred by a diffusion process and subsequently corrupted with white noise, are
successfully reconstructed.

5.2 Hermite-Rodriguez Wavelets and Antidiffusion

The fundamental solution of the diffusion equation[21]{22] at time ¢ can be written[23}
as

G(z,t) = 'V §(z) (182)
where § denotes the Dirac delta function, and which, for t > 0, converges to the

Gaussian form:
-z?/4t

2/t

The function G, also called the initial condition Green’s function[24), has the proper-
ties

(183)

G(z,t) =

%G(:, t) = V¥G(z,t) , G(z,0) = §(z) (184)
It has been proven that the two hyperdistributions defined by
EV5(z) = 3 L2 1v2)s(2) (185)
n=0 n!

are inverse to each other under convolution. That is, the convolution e 'V’ §(z) *
e*'V*§(z) yields the Dirac delta function §(z). Consequently, the fundamental solu-
tion of the antidiffusion equation

%G(x,t) + V¥G(z,t) =0 (186)

can formally be written as e~V §(z).

The set of HR Wavelets {W.}(z)} can be shown to be a globally invariant subspace
(in A) of the operators e**V" (see appendix C). In other words, it can be proven that,
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diffusing the HR wavelet of order n and weight X, for a duration of time t yields a
rescaled HR wavelet of same order but higher weight A,:

VY (i‘} e (187)

where A; = y/A? + 4t. Consequently, the above statement can be time-reversed, to
show that the antidiffusion of the HR wavelet of order n and weight A, for a duration
of time t yields a rescaled HR wavelet of same order but lesser weight );:

T W(z) = (-j—) Whi(z) (188)

1

This property is utilized in the following section.

5.3 Wavelet Reconstruction of Diffused Signals and Images
(Gaussian Blur)

A one-dimensional signal S(z) is diffused for a duration of time t. The resulting
blurred® signal is denoted as S(z). The goal is to reconstruct S(x) by antidiffusing
S(z) for the same duration of time t. To this end, we expand S(z) as the N'* partial
sum of an HR expansion of weight A;:

S(z) ~ zN: i, W (z) (189)

n=0

where {@,}. are the Hermite moments of the blurred signal S(z), weighted by X,.
The partial sum above can be formally antidiffused by antidiffusing the constitutive
blocks of the expansion, which are the HR wavelets: by formally antidiffusing for a
duration of time ¢, we obtain:

-tV & ~ ,—tV? Al ~ A2 _ al -~ V2 X, _ Al - (ﬁ)n M
et S(z)=xe {'g a,.W 2 (z)} = Z:oane (Wi ()} = nzz;)a,, X, W2 i(z)

(190)
with \; = /A — 4t. The antidiffused signal can therefore be put in a form very
similar to an HR expansion, this time of weight A;. However, the antidiffused signal
in Eq.(190) is not an HR expansion, because of the extra factor (%)n multiplying the
Hermite moments a,. Consequently, a condition of the same type as in Eq.(114) does
not guarantee the convergence of the antidiffused series. This matter will be trcated

in the next paragraph. The case of two-dimensional images is similar, since two-
dimensional HR wavelets are the tensor product of two onc-dimensional HR wavelets.

Sin this section, we restrict ourselves to pure gaussian blur
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As a result, the antidiffused HR expansion of an image can be put in a form similar to

. . + . . .
a 2D HR expansion, with the extra factor (%\‘f)n " multiplying the Hermite moment
of order n x m.

Blurred signals and images (pure gaussian blur) have been formally reconstructed
by antidiffusing their HR expansions. Since e!Y” is a linear operator, it is known[29]
that” if both series

. N

S(z) = z_%&,.W,f’(a:) (191)
ﬂ; A2 n

R(z) = an (;\:) Wh(z) (192)

are convergent, then the reconstructed signal is given by R(z) = e~*V"§(z), with
R(z) given by Eq.(192). However, there is no guarantee that the series R(z) does
converge.

More specifically, if the moments a, do not decrease to zero as fast as (,—tf)n
diverges as n — oo, then the series R(z) diverges. This is in fact the typical case
when the diffused waveforms are corrupted by instrumental, numerical, or computer
round-off noise. To see how this happens, we decompose the Hermite moments a,
for a diffused and noisy signal as the sum of the analytically ezact (but unknown)
moments b, , and the residual error ¢,

dn = by + én (193)

The antidiffusion of the HR expansion with the analytically exact moments b, yields
precisely the HR expansion which converges to the original signal S(z):

S(z) =¥ {fi a,,w:z(x)} =Y b (—}) Wh(z) = >°f aWh(z)  (19)

n=0 n=0

On the other hand, the antidiffusion of the HR expansion with the residual error
coefficients €, diverges:

N n
lim Y é, (ﬁ) Wh(z) = oo (195)
N—oo 0 A,

However, since usually €, < bn, the series in Eq.(195) will require a minimum amount
of partial sums before the residual error can grow in modulus and overtake the exact
solution as given by Eq.(194). The series in Eq.(195) is called partially convergent, or

“in onc dimension, without loss of generality
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asymptntic. Consequently, if the N** partial sum ¥"%_ a,W)i(z) is a good approxi-
mation of the original signal S(z), and

LAY AN N
a1 Walz) < Y e Wi (a) (196)
n=0 \Al n=0
which usually implies that N
))
én (A—f) <ay (197)

then the reconstruction

N 3 Az n \
R(z) =) an ()\—) W1 (z) (198)
n=0 1

is successful, and R(z) = S(z). If, on the other hand, the antidiffused residual error
series grows too fast (e.g. if b, and ¢, are of the same order, which is the case if the
Signal-to-Noise Ratio is too low), and higher-order partial sums are required for good
approximations of the signals S(z) and S(z) (e.g. if the original signal comprises
a large number of high-frequency components), then the reconstruction will fail. In
other words, for lower order partial sums, antidiffusion can be implemented for longer
durations of time, and consequently reconstruct severly blurred signals. If, on the
other hand, good approximations of the signals S(z) and S(z) require partial sums
of higher order, the amount of antidiffusion which can be performed on the blurred
signal before instrumental and numerical errors overcome the calculation is limited.
This limitation, as well as successful deconvolutions, are displayed in figure 26 for
one-dimensional signals, and in figure 27 for two-dimensional images.

We now investigate whether it is possible to determine a priori the threshold in the
order N for which the reconstruction by antidiffusion will fail. To this effect, We can
utilize one of two classical constraints employed in signal and image reconstruction:

e positivity: the intensity of each pixel of the reconstructed waveform must be
positive, since the original waveform is everywhere positive.

e total intensitv conservation: the total intensity of the waveform is a con-
served quantity under any diffusion/antidiffusion process (see appendix E). Con-
sequently, it is required of the reconstructed waveform to conserve the total
intensity of the blurred waveform.

At a certain threshold in the order N of the reconstruction, one of the two criteria
above is destined to fail. At that point, the reconstruction will fail as well. That
1s because the diverging antidiffused residual error series in Eq.(195) overtakes in
magnitude the value of the exact antidiffused series in Eq.(194). The upper limit in
N for which the two criteria above are still verified will yield the order of the best
possible reconstruction by antidiffusion of the HR expansion of the blurred waveform.

38




5.4 Application to Simulated Landscapes and Astronomical
Images Corrupted with Gaussian Blur

in ngures 26 and 27, a one-dimensional signal (landscape 11) and a two-dimensional
image (nebula 62) are diffused for a certain amount of time. The diffused waveforms
are subsequently corrupted with white noise obtained by a pseudo-random number
generating algorithm. The one-dimensional signal is corrupted with 3% additive noise
(i.e., the noise is added uniformly onte the diffused signal, at a proportion of 3% of the
maximum intensity of the signal). The two-dimensional image is corrupted with 30%
multiplicative noise (i.e. the noise is added uniformly onto the diffused image, pixel by
pixel, at a varying proportion of 30% of the intensity of each pixel). Both the diffused
and noisy signal and image are then approximated by a 1D and 2D HR expansion
respectively. The HR expansions are subsequently antidiffused by antidiffusing the
underlying HR wavelets. The antidiffusion of the 1D HR wavelet of order n and
weight A for an amount of time ¢ is known exactly: it yields the HR wavelet of same
order, of weight /A2 — 4¢, rescaled by wue factor {A/(v/A% — 4¢)}". The antidiffusion
is carried out on the blurred signal (for the same amount of time as the earlier diffusion
dyration) on two HR partial sums of different order, one of lower order, the other
of higher order. Both reconstructions are displayed. The antidiffusion of the lower-
order partial sum is successful, while the antidiffusion of the higher-order partial sum
displays the diverging effects of noise on the Hermite moments. The antidiffusion is
also carried out on the blurred image for two different HR partial sums. The same
remarks apply. The tests of positivity and conservation of total intensity are carried
out for the signal in figure 26 and the image in figure 27. The results are displayed
in figure 28, together with a least-squares goodness-of-fit evaluation of the fidelity of
the reconstructed waveform with the original waveform, plotted against the order N
of the partial sum. The best reconstruction is located at the minimum of the least-
squares curve, and this does correspond to the upper limit in the order N for which
the reconstructed waveform is everywhere positive, and for which the total intensity
remains equal to the total intensity of the blurred waveform.

It is noteworthy to point out that the noisy signals and images were not pre-
processed for noise reduction before antidiffusion.

In figure 29, the blurring of the image in figure 27 is repeated, and a reconstruc-
tion of the original image by a direct discretization of the antidiffusion equation is
attempted. In the case when the blurring is clean ~that is, when the only source of
noise on the diffused image is numerical round-off noise®-, the reconstruction is suc-
cessful. In the case when the diffused image is corrupted by noise, the reconstruction
is highly unsuccessful.

8the discretization is performed with double-precision real variables, bringing the Signal-to-Noise
Ratio in this case to about 105,
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The advantages of wavelet-based antidiffusion as an algorithm for deblurring sig-
nals and images are:

o The anlidiffusion aigorithm does not require any lengthy computation, since
antidiffused wavelets are known exactly. This is in sharp contrast with the
antidiffusion algorithm (directly involving a discretization of the antidiffusion
equation, which has a very high computational load), or even Fourier transform
methods (which require lengthy integral calculations).

e The algorithm is noise-robust, since noise enters only in the computation of the
Hermite moments of the blurred waveform. In other words, noise is involved in
an integration (the moment computation), which is a “smoothing” operation,
as opposed to a differentiation process (e.g. direct discretization of the antid-
iffusion equation), which is a “roughening” operation. Nevertheless, noise or
numerical errors on the Hermite moments eventually impair the reconstruction
of the blurred waveform in the case where higher-order partial sums are nec-
essary for accurate HR-expansion approximations of the blurred and original
wavelo-ms, as well as in the case of large diffusion durations.

5.5 * Wavelet Reconstruction of Signals and Images cor-
rupted with non-Gaussian Blur

A onc-dimensional signal S(z) is blurred by convolution with a filter F(z) that is
not a gaussian (in other words, the blurring process is not equivalent to a diffusion
in time, but rather the result of a more complicated process). The resulting blurred
signal is denoted as I(z):

S(z) *» F(z) = I(z) (199)
The goal is to reconstruct S(z) by “antiblurring” I(z), which is equivalent to con-
volving I(z) with the convolution inverse of the filter function F(z). In other words,
I(z) will be anti-blurred, and the original signal S(z) will be recovered by iuverting
Eq.( 199). To this end, we will break down the signal, the filter, and the blurred signal
into wavelet “building blocks”, and process the building blocks themselves, instead
of working on the entire waveforms. We will then prove that the resulting wavelet
equations can be easily inverted, and that the inverse problem is well-posed, with
only a mild restriction on the filtering function F(z). We proceed by

e expanding the original S(z) in terms of a truncated HR wavelet expansion of
weight A:

N
S(z) = Y aaW)(2) (200)

n=0

where {a,}. are the Hermite moments of the signal S(z), weighted by A.
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e cxpanding the filter F(z) in terms of a truncated HR wavelet expansion of
weight u:

N
F(z) ~ Zo b WH(z) (201)

where {b,}. are the Hermite moments of the filter F(z), weighted by .

e expanding the blurred signal I(z) in terms of a truncated HR wavelet expansion
of weight v:

N
I(z)~ z‘%an:(z) (202)

where {c,}, are the Hermite moments of the signal I(z), weighted by v.

Eq.( 199) becomes:

{ZanW:(:c)} N {Z b,,,w,;;(x)} =3 o W(z) (203)

From Appendix D, we know that

Wi(z) * WE(z) = 1% WY ™ (2) (204)
where
At ™ (n+ m)!
Au 205
7n,m (/\2 +ﬂ2)n_-2m n!m! ( )

and thus, writing the subscript nm as am, and suppressing the superscript **# when
confusion does not arise, Eq.( 203) becomes:

C = ‘7ooaobo
& = TYoraoh + Teaibo
2 = Yozaob2 + 11a1b1 + 200200
Cn = z 7p.n—papbn—p (206)
p=0
In matrix notation,
( Co\ ( ’700bo 0 0 0 \ (ao \
) o1 b1 T10be 0 0 a;
C2 ’Yozbz ’nlbl 72050 cee 0 az
- (207)
\ Cn } \ 70nbn 'Yl,n-—lbn——] ’)'2.n-'2bn—2 B 771060 ) \ an )
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It can be seen that the above matrix is lower triangular, and thus that the determinant
is equal to the product of the main diagonal, which is equal to b3 [Ti_o 7ko- That
pruduct is always nonzero, provided that by be non-zero. In other words, the matrix
equation ( 207) can always be inverted, provided that the zeroth moment by of the
filter be non-zero. But since we require that the filter conserve the total intensity of
the original waveform S(z), by must be equal to 1 (see Appendix F), and Eq.( 207)
can always be inverted. The solution is obtained by simple Gaussian elimination with
the following recursion formula:

1
aQ = ——Co
° ~Yoobo
1 n—1
a, = Cn — n—pQpbn_ (208
o b E)% pQpOn—p )

Once the coeflicients {a,}. are determined, the original signal S(z) can be recon-
structed by its wavelet expansion:

S(z) =) a.W}(z) (209)

Experiments involving the reconstruction of simulated landscapes and nebulae
corrupted with non-gaussian blur are being developed.
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(a) IMAGE FORMING SYSTEM

scene raciance optical image irradiance
t(x,7) system glx.y)

(b) IMPULSE RESPONSE

f{’ point spread
funczicn

(c) LINEARITY

(d) SHIFT-INVARIANCE

1. Properties of linear and tirne-invariant (LTI) systems.
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- Image formation in the spatial and Fourier domains. Filtering by convolution
with a smooth point-function is a “smoothing” operation.
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3. Approximations of the convolution inverse of a gaussian filter of unit width, as
given by Fourier methods The limits of the Fourier integral are cut-off at *a:

F(a,z,1) = X f*¢ e=*=+% dk. The vertical F axis’ endpoints are the extrema
of F(3.0,z l)
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e

. Approximations of the convolution inverse of a gaussian filter of increasing width
t, as given by Fourier methods. The limits of the Fourier integral are cut-off
at ta: F(a,z,%) = &L 32 e-*=+%' gk The skirt in each figure ends at the

minimum of F(a o,z, 2), whlle the upper endpoint of the vertical F axis ends at
its maximum.
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5. Elements of the sequence of 1D HR wavelets of weight A = 2, evaluated in the
range [-6,6]. The HR wavelets are rescaled to unit height.
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9. A Gaussian of width 0.5, offset at z = 2, is approximated by an HR wavelet
expansion of width A = 1. 32 partial sums are plotted.
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10. The “futuristic” landscape 68 is approximated by an HR wavelet expansion of
width A = 1. The partial sums are plotted in increments of 20. The capturing of
very localized features (i.e. high frequency content) is slower than the capturing
of global behavior (i.e. low frequency content features).
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11. The “futuristic”-looking landscape 71 is approximated by an HR wavelet ex-
pansion of width A = 1. The partial sums are plotted in increments of 20. The
wavelet expansion experiences difficulty in approximating one specific feature
of the landscape. This figure is to be compared with the next figure.

33




-s0 jgnascope’/1

8.0
ul Vi k:
| I i !
| | | N
f' ]’ : I
! i !
L N AN SR A
B \ s /\ : / NI
~60 Approx (@ 60 -60 Apr-ox .0 60 -80 ApPro. 40 co Te: Apprex o0 ec
F ] b , 2
) i
|
| ;
| A '
' BANEER AVARNEIIAY |
-0  Approx 6o ~60 Approx 100 €0 -e6c ApproN .o 60 -60 ALDCx “U [
or | of ©
yi »l -/;7 - ﬁ
i i
i g
. I"v IL
| \ . . '
1 r ‘ S \
t , v'\\ i ,\ p v\ .
g L\ i VAV VAN |
-8¢  Approx16_ ~6c  App-ox:80 80 -80 APDIORIlL 60 -eC AIr"Cull ec
y- | r O( '
| ! h;' ! [lll ;
| i T
S L
| i i I ?
| L L
VN VAN Wi
A 4. R \ s/ \
-6c AppioxlaC €0 -6C Appror.60 ec -e6C ApLrorle. 60 -eC AppiCnall 8

12. The “futuristic”-looking landscape 71 is approximated by an HR wavelet ex-
pansion of width A = 1.15. The partial sums are plotted in increments of 20.
This wavelet expansion, as opposed to the previous expansion for which A = 1,
now quickly captures all features of the landscape. The text explains why this

happens.
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13- The “realistic”-looking landscape 11 is approximated by an HR wavelet expan-
sion of width A = 0.82. The partial sums are plotted in increments of 1. The
first 21 partial sums are entirely undifferentiated, and look exactly like the se-
quence of underlying HR wavelets. The approximation starts taking shape with
the 2379 partial sum.
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14. The “realistic”-looking landscape 11 is approximated by an HR wavelet expan-
sion of width A = 1.0. The partial sums are plotted in increments of 1. The first
9 partial sums are entirely undifferentiated, and look exactly like the sequence
of underlying HR wavelets. The approximation starts taking shape with the

13'* partial sum.
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. The “realistic”-looking landscape 11 is approximated by an HR wavelet expan-
sion of width A = 1.48. The partial sums are plotted in increments of 1. The
features of landscape 11 are generated with very few partial sums. It takes only
7 partial sums to recognize the landscape. The weight A = 1.48 of the wavelet
expansion is optimal for this landscape.
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16. The “realistic”-looking landscape 11 is approximatcd by an HR wavelet expan-
sion of width A = 2.0. The partial sums are plotted in increments of 1. A is
once again in a suboptimal range, as it takes at least twelve partial sums to
recognize the landscape.
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18. The HR moments for landscape 11 were quantized to a range of 256 = 2° values.
In other words, the values of the HR moments were slightly modified to fall into
256 equally spaced bins in the range of the HR moments. The weight A of the
expansion is 1.48 (optimal). The rate of convergence of the quantized wavelet
expansion is only slightly modified. The HR wavelet expansion is robust with
respect to small errors on the HR moments.
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19. First 16 elements of a family of 80 artificial “nebulae”. The nebulae were ob-
tained by summing five 2D gaussians whose widths and offsets were obtained
by a random-number generator in an appropriate range. The nebulae are sub-

sequently rescaled to unit maximum intensity.
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i letter T, t=0 diffused, t=24

restored, t=20 restored, t=16

—

;' restored, t=12 restored, t=8

|
l
|
|
!

i
)
:
|
|
I
!
]

| " restored, t=4 restored, t=0

20. Letter “T” (for Tina), which has been diffused for a duration of time ¢t =
24, corresponding to 12x10 numerical iterations of the discretized diffusion
equation (with unit diffusivity), and subsequently reconstructed back to t = 0
{with intermediary results) by the same number of iterations of the discretized
antidiffusion equation (with unit diffusivity). The reconstruction is successful.
The text gives the correct scale of time ¢.
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letter T, t=0

restored, t=25

|

restored, t=20

f N restorad, t=15

restored, t=10

A

L

vy

—————

restored, t=5

restore.st:O

21. Letter “T”, which has been diffused for a duration of time t = 30 (15x 101 itera-
tions of the discretized diffusion equation), and subsequently reconstructed back
to t = 0 (with intermediary results) by iterating the discretized antidiffusion
equation (15x 10" iterations). The ¢ = 0 reconstruction is not successful.
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letter E, t=0  diffused, t=25.2

e

restored, t=21.0 restored, t=16.8

restored, t=12.6  restored, t=8.4

! ¥restored, t=4.2 restored, t=0.0

22. Letter “E” (for Entropy), which has been diffused for a duration of time ¢t = 24
(12x10* iterations of the discretized diffusion equation), and subsequently re-
constructed back to t = 0 (with intermediary results) by iterating the discretized
antidiffusion equation (12x10* iterations). The reconstruction is successful.
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letter E, t=0

diffused, t=30

restored, t=15

L

]

restored, t=5

restored, t=0

23. Leuter “L”, which has been diffused for a duration of time ¢ = 30 (15x 10" itera-
tions of the discretized diffusion equatiion), and subsequently reconstructed back
to t = 0 (with intermediary results) by iterating the discretized antidiffusion
equation (15x 10 iterations). The ¢ = 0 reconstruction is not successful.
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spiral pattern, t=0 diffused, t=2

[

diffused, t=24 restored, t=0 diffused, t=25.8 restored, t=0

diffused, t=26.4 restored, t=0 diffused, t=27 restored, t=0

24. Spiral pattern, which is diffused for durations t=24, 25.8, 26.4, and 27, and sub-
sequently reconstructed back to t = 0 by iterating the discretized antidiffusion
equation. As time is increased, the reconstruction is increasingly unsuccessful.
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+ noise (SNR=10°) restot:ed, t=0 + noise (SNR=10°) restored, t=0

25. Letter “T™, which is diffused for t=12, and corrupted by additive noise at SI\.IR’s
= 1, 10%, 10%, 10°, and 107. The reconstruction by iterating the discretized

antidiffusion equation is subsequently attempted. The reconstruction is only
successful for extremely high SNR'’s.
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original signal

diffused signal for
t=0.3

noise field

N\

bV SO0

.

diffused  signal  for '

t=0.3, corrupted with
3% additive noise

1=

AN

]

’ reconstructed signal.

l antidiffusing the 25"
partial sum HR ex-

) pansion of the dif-

i fused and noisy sig-

i nal. with weight \ -
3. The reconstruction

| is successful.

L

}
!

reconstructed signal,
antidiffusing the 50
partial sum HR ex-
pansion of the dif-
fused and noisy sig-
nal, with weight A =
3. The reconstruction
is not successful.

alll Ving

26. Landscape 11, which is diffused for ¢ = 0.3 by convolution with the Green’s
function of the 141 diffusion equation.
corrupted with 3% additive noise (the noise field is added uniformly onto the
diffused signal, at a constant proportion of 3% of the maximum intensity of the
signal). The reconstruction by antidiffusion of the HR wavelet expansion of the
diffused and noisy signal is attempted. The weight of the HR wavelet expansion
is A = 3. The 25' partial sum of the reconstruction is a good approximation
to the original signal. The 50" partial sum is not. The text explains why this

happens.
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The diffused signal is subsequently




diffused image for
t=0.8, enhanced for
contrast

diffused image
for t=0.6, corrupted
with 30% multiplica-
tive noise, enhanced
for contrast

reconstructed image,
antidifflusing the 21°
partial sum HR ex-
pansion of the difl-
fused and noisy im-
age. with weight A =
2. The reconstruction

reconstructed image,
antidiffusing the 29"
partial sum HR ex-
pansion of the dif-
fused and noisy im-
age, with weight \ =
2. The reconstruction

1s successful. is not successful.

27. Nebula 62, which is diffused for t = 0.6 by convolution with the Green’s function
of the 2+1 diffusion equation. The diffused signal is subsequently corrupted
with 30% multiplicative noise (the noise field is added pixel-by-pixel onto the
diffused image, at a varying proportion of 30% of the intensity of the pixel).
The reconstruction by antidiffusion of the HR wavelet expansion of the diffused
and noisy image is attempted. The weights of the 2D HR wavelet expansion

n+m=21
are A = g = 2. The 21" partia! sum (ie. Y., X,,) of the reconstruction is a
good approximation to the original image. The 29'* partial sum is not. The
text explains why this happens.
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{ Lendscape 11
order amount of total least
negative intensity squares
intens ity (2.604788) fit
(curve 3) (curve 2) (curve 1)
0 ©.8000000E-00 2.604749 0.26850509
5 2.4978430€E-03 2.608753 2.2497491
10 1.2247832E-02 2.827878 9.2135780
15 5.5897649E-02 2.718218 ©.1514755
20 3.3983381E-07 2.873356 8.2249542
25 7.7248735¢-02 2 Mg 3 377e37BE-02
30 ©.1875234 2.022404 4. 7781941E-02
35 ©.1938782 2.9958173 9.2123651
4 49 9.1120340 2.832430 7.3198855€-02
45 ©.3914833 3.37877% 0.3614376
56 ©.3252848 3.269001 ©.1912387
65 £.8707348 4.,348985 8.9072774
! 62 &.3840842 3.377549 0.2134070
os 1.896428 6.399048 2.848997
om tsr
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P
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Mmoo QO
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Nebuls 82
order asmount of tota! lanst l
negative intens ity squares
intengity (3.287609) fit
{curve ) (curve 2) {curve 1)
6 0.0000000€.00 3.287608 ©.70888689
S ©.15047¢9 3.5868553 @.5150415
180 9.33040087 3.948536 @.7440077
15 @.3568582 4.000921 ®.1455814
20 0.3910236 4.089650 ©.1130484 ]
25 0.7B25704 4.848604 @.1799982
30 3.302227 9.952042 2.049)304
38 13.27540 29.837713 25.30508
a0 47 .56909 90 .40572 304 2093
45 144 23402 291 .9878 2852 . 088
60 395.5940 794 4590 19052 .89

28. Positivity and total intensity conservation test for the reconstructions in the two
previous figures. These tests yield the order of the best possible reconstruction
by wavelet antidiffusion of blurred waveforms. As these tests fail (as curves
2 and 3 diverge), the reconstruction fails as well (the least-squares fit of the
reconstruction with the original waveform, i.e. curve 1, diverges).
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original image

difflused image for
t=0.2, enhanced for
contrast

diffused imoge for !

1=0.2

Reconstruction by
discretization of the
antidiffusion equation
with <YK = 10,

|

Reconstruction by
discretization of the
antidiffusion equation
with SAR = 10'-.

Reconstruction by
discretization of the
antidiffusion equation
with SVA = 5 % 102,

L I

Reconstruction by
discretization of the
antidiffusion equation
| with SAE = 10,

L

“Reconstruction by |
discretization of the
antidiffusion equation
SN = 10" (equiva-
lent to double preci-
sion round-off error).

29. Attempt for reconstruction of the blurred image of nebula 62, by iterating the
discretized antidiffusion equation. While HR wavelet antidiffusion allows recon-
struction with very 'low SNR's, it can be seen that antidiffusion by discretization
of the antidiffusion equation is only possible for very high SNR’s.
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Appendix A: Hyperdistribution Expansion of the
Convelution Inverse of a Gaussian Filter

The Gaussian filter 8)(z,y) is a “radial” filter, that is, it is separable in its two
independent variables  and y. As a result, its hyperdistribution expansion is equally
separable, and the 2D Bochner Algebra reduces to the product of two 1D Algebras (see
Eq.(165)). The hyperdistribution expansion of its inverse is thus equally separable,
and We can restrict the study to just one variable, without loss of generality. The
hyperdistribution expansion in z is obtained from Eq.(163), which is repeated here

+o00 Xi

or(z) = E(—— V2"6(:c) (210)
n=0
The 1D Bochner algebra thus reduces to determining the coefiicients b; such that
n (%‘_)n-—k
bi = 6, 211
kg (= 1 O = b0 (211)

where é,0 = 1 if n = 0 and 0 otherwise. Trying the substitution

(-5
b, = ks! (212)
in the sum in Eq.(211) yields:
/\4 n (___l)k
)" 213
(S)Z%(n—k)!k! (213)
The partial sum above can be rewritten as
n )n k ])k
2: s k T (214)

and the binomial expansion of (1 ~ 1)"/n! is recognized, which is identically equal to
0. except for when n = 0, in which case it 1s equal to 1. ¢.c.d.




Appendix B: Discretization of the operator V?

In this appendix, we discretize the continuous operaior V2, in order to discretize both
diffusion and antidiffusion equations. The discretization scheme will be centrat-in-
space, and forward in time. Let zoo, Zo1,---, Zon, 105 Z11 ---5 T1n, -.- denote the spatial
location of the grid points, and let the real function f, of the variable z,,, be the
measure of a real-valued distribution assigned to the grid. If confusion does not arise,
we will denote f(z,,) as fpe. A Taylor series of order 2 x 2, for f;;, around z,, can
be written as:

an+m
——(Tig — znq)n (qu - Imq) 6namfnm + 0(63) (215)

=Yy

!
womzo nim!

If {z;;}; are the locations of all eight neighbors surrounding z,,, and a;; is the weight
assigned to the neighbor at z,;, we write:

3 3 3 3 2 2 n4m
ZZ ai; fi; = ZZ A5 E Z i (Zig — Tng)" (Tiqg — Tmqg)™ =5 5.5 ———fam + O(&})
=1 3=1 =1 =1 n=0m=0 m

2 2 VS‘ 3 n o 1 an+m
- rgg—_:o t’:éf;mj (zia = ng)" (259 = Tmo) nim! Gndm frm
+O(6;) (216)

We are interested in evaluating V2 f,, as a linear combination of the type I, 3", a4 fi,,
where {z,,},, are the locations of all eight neighbors of z,,. Since

0? 0*?
Vi = E;fij + 572‘.{;)'

—
™)
—
-1

~—

Weset { }um ={ }mn = 0for (m,n)in {(0,0), (0.1), (1,1)}, and { }.m =
{ }mn for (m,n) = {(0,2)}, in Eq.(216). These constraints gencrate five equations,
which reduce to the following two independent equations:
+BE flo +1/,
v? — OZ.['O rq 54 218
vy = —4(a+8) (219)

where a with no subscripts denotes the coefficient assigned to each cell of the diamond
stencil, while 3 denotes the coefficient assigned to each cell of the square stencil, and
7 is the coeflicient assigned to the center-cell rp,. a and /3 remain free parameters in
the discretization.




Appendix C: Global Invariance of the Set of Para-
metric Hermite-Rodriguez Wavelets in the Diffu-
sion Group

In this appendix, we show that the diffusion or antidiffusion of an HR wavelet yields a
rescaled HR wavelet of same order, and of respectively bigger or lesser weight. Since
the Dirac delta is the unit element for the operation of convolution, and since the
diffusion of the Dirac delta yields a Gaussian of width two times the square root of
the diffusion duration, we can write that:

—-r2/4¢

2Vt

The last operation of convolution above can be evaluated explicitly Ly employing the
Rodriguez formula for HR wavelets, and the chain rule on V™:

« Wh(z) (220)

VWX z) = €7 (8(z) * W(2)) = (7 6(z)) * WNz) =

e-T3/4t +oo g—V?/4t (=1)"Anyn e~ (T-v)?/\?
« WNz) = / z-y dy  (221)
2v/nt ~oo  2/7t /2(n!) VA
—1VPANUR phoo =V /Mt o—(z-y)? /N
) / € dy (222)
V2nl) Jme 2vmt VA
(v o 923)
vV2(nl)y  /m(A? 4+ 4t) "
Aﬂ
= —— WY, (224)
(VT @) )
And conscquently, we can write:
diffusion: e*'V* Whi(z) = (%:)RW’\’(:E (225)
antidiffusion: €'V’ W"’(z (%{-)nW“(z) (226)

with A, = /A2 + 41 (227)

In other words, the set of parametric HR wavelets is a globally invariant subspace
-in the weight parameter A- of the diffusion/antidiffusion group[l4]. This property
of HR wavelets enables one to formally diffuse/antidiffuse one-dimensional signals,
or two-dimensional images, by diffusing/antidiffusing the HR wavelets, which are the
building blocks of the signals’ or images’ HR expansions.




*Appendix D: Global Invariance of the Set of
Parametric Hermite-Rodriguez Wavelets in the
Convolution Group

This appendix is a generalization of the previous appendix: We show that the con-

volution of two HR wavelets of respective orders n and m, and respective weights A

and pu, yields another HR wavelet, of order n + m, and weight /A7 + u7.

Lemma 1. The Rodriguez formula for Hermite polynomials yields:
(=) H,(z)e™=" = V*(e~) (228)
It can be rescaled to yield:

(=1)"Hn(z/A)e =/ = V(=) O (229)

Lemma 2. By definition of HR wavelets,

_ Ha(z/)) =¥

Wz) = Hd)z) = 23
2e) = (@) = S (230)
By Lemma 1,
—1)”An e—:rz/,\2
W z) = ( vr 231
o) = S V() (231)
and thus
"1)n+m/\"ﬂm 6_:2/'\2 6-1:2/#2
% WE(z) = ( \VA V™ (-—=—) O 232
n(‘r) * m(z) 221211\/;@ ( \/T_I'A ) * ( \/7_‘_# ) ( )
Lemma 3. The convolution of the n* derivative of e=**/** with the m* derivative of

e~ /4 is given by

2 +oo 2 24,2
Vi (emT V)« V(T /W) = / Ve VIV Y VT (e dy (233)

- 00

By the chain rule on VT,

+o00 2, 2
V(e " V) & V(e P = /_ V(e VM) U (e 9 et gy

o0
= vm/+°°v;(e—y’”’)e-“'w’/"?dy (234)
-~ 00

n

By a change of variables, and the chain rule on V7_ |

V"(c"zlv) * V'"(c—‘r?/“z) = Vvt /+oo vV C"("”)z/“z({y (235)

- 00
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and finally,

Ve )« Om(emF /) = Azi,,z vrtm (e )y g (236)
Finally combining Lemmas 2 and 3,
WA(z) « Wh(z) = 2 Wl () (237)
with
Tk = o i": :;_m ("nfm";)! (238)

In other words, the set of parametric HR wavelets is a globally invariant subspace ~in
the weight parameter A- under convolution. This property of HR wavelets enables one
to formally convolve/deconvolve one-dimensional signals, or two-dimensional images,
by convolving/deconvolving the HR wavelets, which are the building blocks of the
signals’ or images’ HR expansions.
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Appendix E: Waveform Total Intensity Conserva-
tion in the Diffusion Group
We first prove that any diffusion/antidiffusion process conserves the total intensity of

the initial condition. In other words, if We denote by I(z) the initial condition of a
diffusion/antidiffusion process, then the total intensity is given by [*&° I(z)dz, and

+00
9 / eV [(z)dz = 0 (239)
Ot J-oo
The proof is as follows. By integrating in space the diffusion/antidiffusion equation
for u(z,t):
+o0 Ju too
/_w —g-t-d:rd:/_oo Viudz = 0 (240)

With the help of Gauss’ theorem,

a +oo - & 1+
55/-00 udz:i:[n-Vu]_oo-——O (241)
and thus
4 / Y udz =0 242)
ot Jooo U T (
Since u(z,t) = e*'V* I(z), we obtain the desired result:
+00 )
% [ e @) dz =0 (243)

The same reasoning can be easily extended to the case where the initial condition is
a two-dimensional image 7(z,y).

Furthermore, the total intensity of a truncated HR wavelet expansion of any wave-
form is exactly equal to the total intensity of the waveform. That is because the total
intensities of all HR wavelets are identically equal to zero, except for the total inten-
sity of the HR wavelet of order 0, which is by definition the zeroth IR moment, and
thus the total intensity of the waveform. In other words, the expansion of a waveform
in terms of a truncated HR wavelet series conserves the total intensity of the original
waveform (this property is also true in Fourier series).
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*Appendix F: Do Point-Spread-Functions Conserve
the Total Intensity of the Original Waveform?

In this appendix, we derive the constraint imposed on the point-spread function of
LTI systems which conserves the total intensity Z of their input. In other words,
if u(z) denotes the input function, v(z) denotes the output, and f(z) denoted the
impulse response or point-spread-function, we require that

/+°° v(z)dr = /+°° u(z)dr =1 (244)

—00 —00

But

o(z) = u(z) s () = [ :° fla - 2yu(z)da’ = [ Y (s — 2)ds (245)

-—00

and thus, by exchanging the order of integration,

j_:o v(z)dz = //_:o f(z")u(z — £')dz'dz = /_:o f(z" {/_:o u(z — :c')dx} dz’
i :" F(z') T ds’ (246)

We conclude that the sufficient condition for total intensity conservation of the input
is that the total intensity of the point-spread-function be normalized to

+00
f(z)dz =1 (247)
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